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In real quadratic number field 𝑄(√𝑑), integral basis element is denoted by 

𝑤𝑑 = [ 𝑎0;  𝑎1, 𝑎2, … ,  𝑎ℓ(d)−1, 𝑎ℓ(d)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ] for the period length ℓ(d). The 

fundamental unit 𝜀𝑑 of real quadratic number field is also denoted by 𝜀𝑑 =
𝑡𝑑+𝑢𝑑√𝑑

2
> 1. The Unit Theorem for real quadratic fields says that every unit 

in the integer ring of a quadratic field is generated by the fundamental unit. 
Also, regulator in real quadratic cryptography is outstanding.  We have seen 
that the regulator 𝑅 = log 𝜀𝑑 plays the role of a group order. The regulator 
problem is to find an integer 𝑅′ satisfies  |𝑅′ −  𝑅| < 1 where 𝑅′  is an 
approximation of 𝑅 with any given precision can be computed in polynomial 
time for discriminant. However, some of the fundamental units can not be 
calculated by computer programme in short time because of the big numbers  
or long calculations of usual algorithm. This is also the main problem from 
the computing/informatics point of view. So, determining of the fundamental 
units is of great importance. In this paper, we construct a theorem to 

determine the some certain real quadratic fields 𝑄(√𝑑) having specific form 

of continued fraction expansion of 𝑤𝑑 where 𝑑 ≡ 1(𝑚𝑜𝑑4) is a square-free 
integer. We also present the general context and obtain new certain 
parametric representation of fundamental unit 𝜀𝑑  for such types of fields.By 
specialization, we get a fix on Yokoi’s invariants and support all results with 
tables. 
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1. Introduction 

*Development of the theory of quadratic fields is 
not easy task. Tools of the infrastructure of quadratic 
fields have rendered numerous results in algebraic 
and computational number theory with 
cryptography as well as algebraic geometry, 
especially when applied to quadratic order. For 
example, Public Key Cryptography is one of the main 
techniques for making the internet secure in the 
cryptography and computer science. Most public key 
crypto-systems are based on intractable 
computational problems in number theory such as 
factoring integers. One source for computationally 
hard problems is algebraic number theory. Since the 
Diffie-Hellman key exchange protocol was presented 
in class groups of imaginary quadratic orders in 
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1988, many public key crypto-systems have been 
suggested whose security is based on difficult 
problems in quadratic number fields. Since then it 
has been started to state of the art of real and 
imaginary quadratic field crypto-systems. 

Also, there are many different approach from that 
of most authors who use genus theory, composition 
of binary quadratic forms, and who use class field 
theory as a developmental tool. Also, many books 
and papers on the number theory include(use) 
continued fraction, ideal,  class number, quadratic 
residue, prime producing quadratic polynomials, 
binary quadratic forms, elliptic curves, algorithms in 
cryptography based upon ideals with continued 
fraction algorithms, regulators in the class group, etc. 

Because of the importance of the class number, 
the problem of determining the class number is of 
central interest in algebraic number theory. In 
general, the determination of the class number of an 
arbitrary algebraic number field is not an easy task. 
There exist some formulaes for determining the class 
numbers of real and imaginary quadratic fields, but 
the problem of determining the class number of an 
arbitrary number field is still beyond the scope of 
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contemporary number theory.For example, to 
determine the class number (Dirichlet class number 
formulae), we need regulator, values of 𝐿- function, 
discriminant etc. So, real quadratic fields have great 
importance in many branches of mathematics, even 
computer science. 

It is also well known that the fundamental units 
play an important role in studying the class number 
problem, unit group, pell equations, cryptology, 
network security and even computer science. Most 
of present and past works focused on the lower 
bound of fundamental units and the number of some 
special types of  polynomials with fixed period of 
continued fraction expansions, certain class number 
and some types of continued fraction expansions, 
relations between the coefficients of fundamental 
units, comparison between the period length, 
quadratic fields and cryptology and Yokoi’s 
invariants (Buchmann, 2004; Badziahin and Shallit, 
2016; Benamar et al., 2015; Clemens et al., 1995; 
Elezovi´, 1997; Kawamoto and Tomita, 2008; 
Louboutin, 1988; Özer, 2016a; 2016b; Sasaki, 1986; 
Tomita, 1995; Tomita and Yamamuro, 2002; 
Williams and Buck, 1994; Yokoi, 1990; 1993a; 1991; 
1993b; Zhang and Yue, 2014). For the history and 
main results on infrastructures of quadratic fields, 
we refer to the reader to (Mollin,1996; Olds, 1963; 
Perron, 1950; Sierpinski, 1964). 

The focal point of this paper is to determine the 
some specific types of  the real quadratic fields 

Q(√d) and the representation of  fundamental units 

𝜀𝑑 =
𝑡𝑑+𝑢𝑑√𝑑

2
 where d ≡ 1(mod4) is a square free 

positive integer. By using this practical way, 
obtained results on fundamental units, Yokoi's 
invariants, continued fraction expansions, period 
length are given with tables as illustrates. Also,  
present paper completes (Özer, 2016b) in the case of  
d ≡ 1(mod4). 

2. Prelimınaries 

Now, we recall some definitions and lemmas 
which will be used later.  

2.1. Quadratic fields 

Definition 1. If 𝑘 is an extension of 𝑄 of degree two, 
then 𝑘 is called a quadratic field and represents as 

𝑘 = Q(√d) where d is a square free integer.  

Definition 2. If d > 0 square free integer, then 

Q(√d)  is called a real quadratic field, and if d < 0 

then Q(√d) is called a imaginary (complex) 

quadratic field.  

Note 1. There is a one to one correspondence 
between quadratic fields and square free rational 
integer for d ≠ 1. Also, 𝒪𝑑  is called integral ring is 
the ring of integers of the quadratic field 𝑘. The ring 
of integer of quadratic field has two integral basis 
elements. One of is the trivial identity element 1, 

another is the non trivial basis element 𝑤𝑑 . In real 

quadratic fields, 𝑤𝑑  is defined 𝑤𝑑  =
1+√d

2
 in the case 

of d ≡ 1(mod4) and also 𝑤𝑑 = √d in the case of  d ≡
2,3(mod4). 

2.2. Continued fraction expansions 

There are many types of continued fraction 
expansions, but in our work, we use the quadratic 
irrational numbers and reduced quadratic 
irrationals, which indicate the periodic continued 
fraction expansion and purely periodic continued 
fraction expansion, respectively. 

Definition 3. Let  𝑎0, 𝑎1, 𝑎2, … ,  𝑎j, … are integers and 

 𝑎j > 0 for 0 < 𝑗. Then  

 
[ 𝑎0; 𝑎1, 𝑎2, … ,  𝑎j, … ] =   𝑎0 +

1

𝑎1+
1

 𝑎2+
              ⋱

                                                       + 
1

𝑎𝑗−1+
1
𝑎𝑗+

               ⋱

  

 
is called simple continued fraction expansion. 

Definition 4. A real number 𝛾 is called a quadratic 

irrational, if  𝛾 can be written as  𝛾 =
𝑃+√𝑑

𝑄
  where 

𝑃, 𝑄, 𝑑 are integers, 𝑑 > 0, 𝑄 ≠ 0, and 𝑃2 ≡
𝑑(mod 𝑄). 

Definition 5. Quadratic 𝛾 is called periodic if 𝛾 =
[ 𝑎0; 𝑎1, 𝑎2, … ] where  𝑎n =  𝑎ℓ(d)+𝑛 for all 𝑛 ≥ 𝑘 with 

ℓ(d), 𝑘 ∈ 𝑁. We use the notation 𝛾 =

[ 𝑎0; 𝑎1, 𝑎2, … , 𝑎𝑘−1 , 𝑎𝑘 , 𝑎𝑘+1, … ,  𝑎ℓ(d)+𝑘−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] where 

ℓ(d) is period length of 𝛾. 

Definition 6. Quadratic 𝛾 is called purely periodic if 

𝛾 = [ 𝑎0; 𝑎1, 𝑎2, … , 𝑎ℓ(d)−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ].  

Example 1. Let 𝑑 = 145. if we consider 𝛾 =
9+√145

8
, 

then continued fraction expansion of  𝛾 is given by 
[2; 1, 1, 1, 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] with period ℓ(d) = 5. 

2.3. Fundamental units 

Definition 7. Let 𝑄(√𝑑) be a real quadratic number 

field and 𝑈𝑑  be a unit group. In real quadratic fields, 
positive units in 𝑈𝑑  have a generator, which is the 
smallest unit exceeds 1. This selection is unique and 

is called the fundamental unit of 𝑄(√𝑑) and  denoted 

by 𝜀𝑑 =
1

2
(𝑡𝑑 + 𝑢𝑑√𝑑). 

Note 2. When 𝑑 < 0, then 𝑈𝑑  unit group is finite 
cyclic and when 𝑑 > 0 then the positive units of  𝑈𝑑  
form a multiplicative group isomorphic to 𝒵, and so 
𝑈𝑑  contains exactly one generator larger than 1 
describing as fundamental unit. 
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Proposition 1. Let 𝑄(√𝑑) be a real quadratic 

number field, then there is a fundamental unit 𝜀𝑑 > 1 

where the unit group of 𝑄(√𝑑) is 𝑈𝑑 = {∓ 𝜀𝑑
𝑠| 𝑠 𝜖 𝑍 }. 

To illustrate to notion of  fundamental unit, we 
have followings: 
 

Example 2. Let 𝑑 = 5, then the fundamental unit is  

𝜀𝑑 = (1 + √5) 2⁄  since (1 + √5) 2⁄  > 1 and 

((1 + √5) 2⁄ )((1 − √5) 2⁄ ) = −1. Powers of 

(1 + √5) 2⁄  are also units and there are infinitely 

many of them since (1 + √5) 2⁄ > 1. 

Remark 1. Not all fundamental units are so easy to 
calculate practically, even for small values of 𝑑. So, 
this is very important to find a practical method so 
as to easily and rapidly determine fundamental unit 
𝜀𝑑. 

Example 3. If we take 𝑑 = 1969 ≡ 1(mod4) ,then 

𝑤𝑑  =
1+√d

2
  and the fundamental unit is 

 
𝜀𝑑 = 45828407842475722320774887146451 +
2113202631220407492138882654600𝑤𝑑  

Note 3. Additionaly, Yokoi’s invariants, which were 
defined by H.Yokoi are determined by the coefficient 

of fundamental unit 𝜀𝑑 = 
𝑡𝑑+ 𝑢𝑑√𝑑

2
 as 𝑚𝑑 = ⟦

𝑢𝑑
2

𝑡𝑑
⟧ and 

𝑛𝑑 = ⟦
𝑡𝑑

𝑢𝑑
2⟧ have got great importance in class number 

problem and in the solvability of Pell equations 
where ⟦𝑥⟧ represents the greatest integer not 
greater than 𝑥. 

In this section we also give some fundamental 
concepts as follows for the proof of our main 
theorem defined in the next section. 

Note 4. For the set 𝐼(𝑑) of all quadratic irrational 

numbers in 𝑄(√𝑑), we say that 𝛼 in 𝐼(𝑑) is reduced if 

𝛼 > 1,−1 < 𝛼′ < 0 (𝛼′ is the conjugate of 𝛼 with 
respect to 𝑄), and 𝑅(𝑑) denotes the set of all reduced 
quadratic irrational numbers in 𝐼(𝑑).Then, it is well 
known that any number 𝛼 in 𝑅(𝑑) is purely periodic 
in the continued fraction expansion and the 
denominator of its modular automorphism is equal 

to fundamental unit 𝜀𝑑 of 𝑄(√𝑑). 

Definition 8. (Özer, 2016a) {𝑌𝑖} is called a sequence 
defined by the recurrence relation 
 
𝑌𝑖 = 5𝑌𝑖−1 + 𝑌𝑖−2  
 
with seed values 𝑌0 = 0  and  𝑌1 = 1 for 𝑖 ≥ 2.  

Lemma 1. (Tomita, 1995) Let 𝑑 be a square-free 
positive integer such that 𝑑 congruent to 1 modulo 4. 

If we put 𝑤𝑑 =
1+ √𝑑

2
, 𝑎0 = ⟦𝑤𝑑⟧ into the 𝑤𝑅 = (𝑎0 −

1)  + 𝑤𝑑 , then 𝑤𝑑  ∉  𝑅(𝑑) but 𝑤𝑅 ∈  𝑅(𝑑)holds. 
Moreover, for the period 𝑙 = ℓ(d) of 𝑤𝑅 , we get 𝑤𝑅 =

 [2𝑎0 − 1, 𝑎1, . . . . . . . , 𝑎𝑙−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] and 𝑤𝑑 =
[𝑎0, 𝑎1, . . . . . . . , 𝑎𝑙−1, 2𝑎0 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ].  

Let 𝑤𝑅 =
(𝑃𝑙𝑤𝑅+𝑃𝑙−1)

(𝑄𝑙𝑤𝑅+𝑄𝑙−1)
=

[2𝑎0 − 1, 𝑎1, . . . . . . . , 𝑎𝑙−1, 𝑤𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]  be a modular 
automorphism of 𝑤𝑅 , then the fundamental unit 𝜀𝑑 of 

𝑄(√𝑑) is given by the formulae 

 

𝜀𝑑 = 
𝑡𝑑+ 𝑢𝑑√𝑑

2
 ,   𝑡𝑑 = (2𝑎0 − 1). 𝑄ℓ(𝑑)  +  2𝑄ℓ(𝑑)−1 , 𝑢𝑑 =

 𝑄ℓ(𝑑)  

 
where 𝑄𝑖  is determined by Q0 = 0 , Q1 = 1 and 
𝑄𝑖+1 = 𝑎𝑖𝑄𝑖  +  𝑄𝑖−1 , (𝑖 ≥  1). 

3. Main theorem and results 

Main Theorem. Let 𝑑 be square free positive integer 
and ℓ ≥ 2 be a positive integer.  
 
(1) We suppose that  

 
𝑑 = (2𝛿𝑌ℓ + 5)

2 + 8𝛿𝑌ℓ−1 + 4  
 
where 𝛿 > 0 is a positive integer. In this case, we 
obtain that d ≡ 1(mod4) and 
 

𝑤𝑑 = [3 + 𝛿𝑌ℓ; 5,5, … ,5⏟    
ℓ−1

, 5 + 2𝛿𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]  

 
with ℓ = ℓ(𝑑). Moreover, we get  
 

𝑡𝑑 = 2𝛿𝑌ℓ
2 + 5𝑌ℓ + 2𝑌ℓ−1 and 𝑢𝑑 = 𝑌ℓ for 𝜀𝑑 =

𝑡𝑑+𝑢𝑑√𝑑

2
. 

 
(2) If  ℓ ≡ 0(𝑚𝑜𝑑3), and  
 
𝑑 = (𝛿𝑌ℓ + 5)

2 + 4𝛿𝑌ℓ−1 + 4  
 
for 𝛿 > 0  positive odd integer, then d ≡ 1(mod4) 
and  
 

𝑤𝑑 = [3 +
𝛿𝑌ℓ

2
; 5,5,… ,5⏟    

ℓ−1

, 5 + 𝛿𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]  

 
Also, in this case  
 

𝑡𝑑 = 𝛿𝑌ℓ
2 + 5𝑌ℓ + 2𝑌ℓ−1 and 𝑢𝑑 = 𝑌ℓ hold for 𝜀𝑑 =

𝑡𝑑+𝑢𝑑√𝑑

2
. 

Remark. it is clear that 𝑌ℓ is odd number if ℓ ≢

0(𝑚𝑜𝑑3). 
𝛿𝑌ℓ

2
 is not integer if we substitue 𝛿 odd 

numbers into the parametrization of d for ℓ ≢
0(𝑚𝑜𝑑3). So, we assume that ℓ is divided by 3 in the 
case of (2). Also, if we choose 𝛿 is even integer, the 
parametrization of 𝑑 in (2) coincides with the case of 
(1). That's why we assume ℓ ≡ 0(𝑚𝑜𝑑3) and 𝛿 > 0 
positive odd integer in the case of (2).  

Proof. (1) For any ℓ ≥ 2 and 𝛿 > 0  positive integer, 
𝑑 ≡ 1(𝑚𝑜𝑑4) holds since (2𝛿𝑌ℓ + 5) is odd integer. 

https://en.wikipedia.org/wiki/Recurrence_relation
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From Lemma 1, we know that 𝑤𝑑 =
1+ √𝑑

2
, 𝑎0 = ⟦𝑤𝑑⟧ 

and 𝑤𝑅 = (𝑎0 − 1)  + 𝑤𝑑 . 
By using these equations, we obtain 

𝑤𝑅 = (2 + 𝛿𝑌ℓ) + [3 + 𝛿𝑌ℓ; 5,5, … ,5⏟    
ℓ−1

, 5 + 2𝛿𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] 

                                             ⇒  𝑤𝑅 = (5 + 2𝛿𝑌ℓ) +
1

5+
1

5+
1

  
        ⋱ 

                                  +
1

5+
1
𝑤𝑅

   

 

                                                         = (5 + 2𝛿𝑌ℓ) +

 
1

5+⋯+

1

5 +

1

𝑤𝑅
   

 
By a straight forward induction argument, we 

have  
 

𝑤𝑅 = (5 + 2𝛿𝑌ℓ) + 
𝑌ℓ−1𝑤𝑅+𝑌ℓ−2

𝑌ℓ𝑤𝑅+𝑌ℓ−1
  

 
Using Definition 8 and put 𝑌ℓ+1 + 𝑌ℓ−1 = 5𝑌ℓ +

2𝑌ℓ−1  equation into the above equality, we obtain  
 

𝑤𝑅
2 − (5 + 2𝛿𝑌ℓ)𝑤𝑅 − (1 + 2𝛿𝑌ℓ−1) = 0  

 

This implies that 𝑤𝑅 =
(5+2𝛿𝑌ℓ)+√𝑑 

2
 since 𝑤𝑅 > 0. 

If we consider Lemma 1, we get 
1+√𝑑 

2
= [3 +

𝛿𝑌ℓ; 5,5, … ,5⏟    
ℓ−1

, 5 + 2𝛿𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] and ℓ = ℓ(𝑑). Proof of the 

first part of (1) is completed.  
Now, we have to determine 𝜀𝑑, 𝑡𝑑 and 𝑢𝑑  using 

Lemma 1. We have known that 𝑄𝑖 = 𝑌𝑖  from (Özer, 
2016a) by induction for ∀𝑖 ≥ 0. 

If we substitute the values of sequence into the 
coefficients of fundamental unit  

 
𝑡𝑑 = 2𝛿𝑌ℓ

2 + 5𝑌ℓ + 2𝑌ℓ−1    and    𝑢𝑑 = 𝑌ℓ  holds for 𝜀𝑑 =
𝑡𝑑+𝑢𝑑√𝑑

2
. 

 
(2) In the case of  ℓ ≡ 0(𝑚𝑜𝑑3), 𝑌ℓ ≡ 0(𝑚𝑜𝑑2) 

holds. By subsituting this equivalence into the 
parametrization of  𝑑, we have 𝑑 ≡ 1(𝑚𝑜𝑑4) for 𝛿 >
0  positive odd integer.  

By using Lemma 1 and the parametrization 
of 𝑑 = (𝛿𝑌ℓ + 5)

2 + 4𝛿𝑌ℓ−1 + 4, we have 
 

 𝑤𝑅 = (𝑎0 − 1) + 𝑤𝑑 ⇒ 𝑤𝑅 = (2 +
𝛿𝑌ℓ

2
) + [3 +

𝛿𝑌ℓ

2
; 5,5,… ,5⏟    

ℓ−1

, 5 + 𝛿𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] 

                                       ⇒  𝑤𝑅 = (5 + 𝛿𝑌ℓ) +
1

5+
1

5+
1

  
        ⋱ 

                                  +
1

5+
1
𝑤𝑅

   

 

                                                   = (5 + 𝛿𝑌ℓ) + 
1

5+⋯+

1

5 +

1

𝑤𝑅
   

 
By a straight forward induction argument, we get 
 

𝑤𝑅 = (5 + 𝛿𝑌ℓ) + 
𝑌ℓ−1𝑤𝑅+𝑌ℓ−2

𝑌ℓ𝑤𝑅+𝑌ℓ−1
  

 
Using Definition 8 and put 𝑌ℓ+1 + 𝑌ℓ−1 = 5𝑌ℓ +
2𝑌ℓ−1  equation into the above equality, we obtain  
 
𝑤𝑅
2 − (5 + 𝛿𝑌ℓ)𝑤𝑅 − (1 + 𝛿𝑌ℓ−1) = 0   

 

This implies that 𝑤𝑅 = (2 +
𝛿𝑌ℓ

2
) +

1+√𝑑 

2
 since 𝑤𝑅 >

0. If we consider Lemma 1, we get 
 
1+√𝑑 

2
= [3 +

𝛿𝑌ℓ

2
; 5,5,… ,5⏟    

ℓ−1

, 5 + 𝛿𝑌ℓ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] and ℓ = ℓ(𝑑). 

 
Using 𝑄𝑖 = 𝑌𝑖  for ∀𝑖 ≥ 0, we obtain the 

coefficients of fundamental unit as follows: 
 

𝑡𝑑 = 𝛿𝑌ℓ
2 + 5𝑌ℓ + 2𝑌ℓ−1    and    𝑢𝑑 = 𝑌ℓ for 𝜀𝑑 =

𝑡𝑑+𝑢𝑑√𝑑

2
.  

 
We can obtain following conclusions from Main 

Theorem.  

Corollary 1. Let d be a square free positive integer 
congruent to 1 modulo 4. If we assume that 𝑑 is 
satisfying the conditions in Main Theorem, then it 
always hold Yokoi’s invariant 𝑚𝑑=0.  

Proof. Yokoi’s invariant 𝑚𝑑 is defined 𝑚𝑑 = ⟦ 
𝑢𝑑
2

𝑡𝑑
 ⟧ by 

Yokoi (1990, 1991, 1993a, 1993b). In the case of (1), 
if we substitue 𝑡𝑑 and 𝑢𝑑  into the 𝑚𝑑, then we obtain 
 

𝑚𝑑 = ⟦
𝑢𝑑
2

𝑡𝑑
⟧ = ⟦

𝑌ℓ
2

2𝛿𝑌ℓ
2+5𝑌ℓ+2𝑌ℓ−1    

⟧  

 
So, we get 𝑚𝑑=0 since  𝛿 > 0 is positive integer. 

In a similar way, we obtain 𝑚𝑑= ⟦
𝑢𝑑
2

𝑡𝑑
⟧ =

⟦
𝑌ℓ
2

𝛿𝑌ℓ
2+5𝑌ℓ+2𝑌ℓ−1    

⟧ =0 since 𝑡𝑑 > 𝑢𝑑
2  for 𝛿 > 0 positive 

odd integer in the case of (2). 

Corollary 2. Let 𝑑 be the square free positive integer 

positive integer corresponding to 𝑄(√𝑑) holding (1) 

in the Main Theorem. We state the following Table 1 
where fundamental unit is 𝜀𝑑, integral basis element 
is 𝑤𝑑  and Yokoi’s invariant is 𝑛𝑑 for  𝛿 = 1,2 and 2 ≤
ℓ(𝑑) ≤ 11. (In Table 1, we rule out ℓ(𝑑) = 7,8 for 𝛿 =
2 since d is not a square free positive integer.) 

Proof. This Corollary is obtained from main theorem 
by taking 𝛿 = 1 or 2 in the case of (1) of Main 

Theorem. We know 𝑛𝑑 is defined 𝑛𝑑 = ⟦
𝑡𝑑

𝑢𝑑
2⟧. If we 

substitue 𝑡𝑑  and 𝑢𝑑  into the 𝑛𝑑, then we get 
 

𝑛𝑑 = ⟦
𝑡𝑑

𝑢𝑑
2⟧ = ⟦

2𝑌ℓ
2+5𝑌ℓ+2𝑌ℓ−1

𝑌ℓ
2 ⟧ = 2 + ⟦

5𝑌ℓ+2𝑌ℓ−1

𝑌ℓ
2 ⟧  

 
for 𝛿 = 1. For ℓ = 2, we get 𝑛𝑑 = 3. Since 𝑌ℓ is 
increasing sequence, we obtain 

   2,208 >  (
2𝑌ℓ

2+5𝑌ℓ+2𝑌ℓ−1

𝑌ℓ
2 ) > 2       
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Table 1: Square-free positive integers d with 2 ≤ ℓ(𝑑) ≤ 11 

𝑑 𝛿 ℓ(𝑑) 𝑛𝑑  𝑤𝑑 𝜀𝑑  

237 1 2 3 [8; 5,15̅̅ ̅̅ ̅̅ ] (77 + 5√237)
2
⁄  

3293 1 3 2 [29; 5,5, 57̅̅ ̅̅ ̅̅ ̅̅ ̅] (1492 + 26√3293)
2
⁄  

75837 1 4 2 [138; 5,5, 275̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] (37177 + 135√75837)
2
⁄  

1980733 1 5 2 [704; 5, … ,5,1407̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] (986577 + 701√1980733)
2
⁄  

53076837 1 6 2 [3643; 5, … ,5, 7285̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] (26518802 + 3640√53076837)
2
⁄  

1429398373 1 7 2 [18904; 5, … ,5, 37807̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] (714597387 + 18901√1429398373)
2
⁄  

38531878237 1 8 2 [98148; 5, … ,5,196295 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] (19265410577 + 98145√38531878237)
2
⁄  

1038885617213 1 9 2 [509629; 5, … ,5, 1019257̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] (519440064172+ 509626√1038885617213)
2
⁄  

28011142505037 1 10 2 [2646278; 5, … ,5, 5292555̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] (14005557001877+ 2646275√28011142505037)
2
⁄  

755260729918253 1 11 2 [13741004;5, … ,5, 27482007̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] (377630290961557 + 13741001√755260729918253)
2
⁄  

645 2 2 5 [13; 5,25̅̅ ̅̅ ̅̅ ] (127 + 5√645)
2
⁄  

11965 2 3 4 [55; 5,5,109̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] (2844 + 26√11965)
2
⁄  

297445 2 4 4 [273; 5, … ,5,545̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] (73627 + 135√297445)
2
⁄  

7892645 2 5 4 [1405; 5, … ,5,2809̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] (1969379 + 701√7892645)
2
⁄  

212150445 2 6 4 [7283; 5, … ,5,14565̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] (53018002 + 3640√212150445)
2
⁄  

4155520513405 2 9 4 [1019255; 5, … ,5,2038509̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] (1038877383924 + 509626√4155520513405)
2
⁄  

112044456015045 2 10 4 [5292553;5, … ,5,10585105̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] (28011099753127 + 2646275√112044456015045)
2
⁄  

3021042327692485 2 11 4 [27482005; 5, … ,5,54964009̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] (755260507925559+ 13741001√3021042327692485)
2
⁄  

 
for ℓ ≥ 3. Therefore, we obtain 𝑛𝑑 = 2 for ℓ ≥ 3. 

Also, in the case of 𝛿 = 2, we get 𝑛𝑑 = 5 for ℓ = 2 as 
well as  𝑛𝑑 = 4 for   ℓ ≥ 3 by using similar way. The 
proof of Corollary 2 is  completed. 

Corollary 3. Let 𝑑 be the square free positive 

integer corresponding to 𝑄(√𝑑) holding (2) in the 

Main Theorem. We state the following Table 2 where 
fundamental unit is 𝜀𝑑, integral basis element is 𝑤𝑑  
and Yokoi’s invariant is 𝑛𝑑 for  𝛿 = 1,3 and 3 ≤
ℓ(𝑑) ≤ 12. (In Table 2, we rule out ℓ(𝑑) = 6 for 𝛿 = 1 
since d is not a square free positive integer.) 

 
Table 2: Square-free positive integers d with 3 ≤ ℓ(𝑑) ≤ 12 

𝑑 𝛿 ℓ(𝑑) 𝑛𝑑  𝑤𝑑 𝜀𝑑  

985 1 3 1 [16; 5,5,31̅̅ ̅̅ ̅̅ ̅̅ ] (816 + 26√985)
2
⁄  

259724148745 1 9 1 [254816; 5,… 5,509631̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] (259721404296 + 509626√259724148745)
2
⁄  

5091005926115233 1 12 1 [35675643; 5,… 5,71351285̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] (5091005541876802 + 71351280√5091005926115233)
2
⁄  

6953 3 3 3 [42; 5,5,83̅̅ ̅̅ ̅̅ ̅̅ ] (2168 + 26√6953)
2
⁄  

119364041 3 6 3 [5463; 5, … ,5,10925̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] (39768402 + 3640√119364041)
2
⁄  

2337484405433 3 9 3 [764442; 5, …5,1528883̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] (779158724048 + 509626√2337484405433)
2
⁄  

45819048724176041 3 12 3 [107026923; 5,… 5,214053845̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] (15273015857153602 + 71351280√45819048724176041)
2
⁄  

 

Proof. By subsituting 𝛿 = 1 or 3 into the (2) of 
Main Theorem, we get this corallary and the table in 
the case of (2) of Main Theorem. If we substitue 𝑡𝑑 

and 𝑢𝑑 into the 𝑛𝑑 = ⟦
𝑡𝑑

𝑢𝑑
2⟧, then we get 

 

𝑛𝑑 = ⟦
𝑡𝑑

𝑢𝑑
2⟧ = ⟦

𝑌ℓ
2+5𝑌ℓ+2𝑌ℓ−1

𝑌ℓ
2 ⟧ = 1 + ⟦

5𝑌ℓ+2𝑌ℓ−1

𝑌ℓ
2 ⟧  

 
for 𝛿 = 1. Since 𝑌ℓ is increasing sequence, we obtain 

 

1,208 >  (
𝑌ℓ
2+5𝑌ℓ+2𝑌ℓ−1

𝑌ℓ
2 ) > 1       

for ℓ ≥ 3. Therefore, we obtain 𝑛𝑑 = 1 for ℓ ≥ 3. 
Also, we get 𝑛𝑑 = 3 for   ℓ ≥ 3 in a similar way for 
𝛿 = 3. 

4. Conclusıon and future works 

There are a lot of applications for quadratic fields 
in many different fields of mathematics which 
include algebraic number theory, algebraic 
geometry, algebra, cryptology, and also other 
scientific fields like computer science.  
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In this paper, we introduced the notion of real 
quadratic field structures such as continued fraction 
expansions, fundamental unit and Yokoi invariants. 
We established general interesting and significant 
results for that. Results obtained in this paper 
provide us a useful and practical method in order to 
rapidly determine continued fraction expansion of 
𝑤𝑑  fundamental unit 𝜀𝑑 and and Yokoi invariants 
𝑛𝑑  for such real quadratic number fields. 

Findings in this paper will help the researchers to 
enhance and promote their studies on quadratic 
fields to carry out a general framework for their 
applications in life.  

Future researches will be related to the 
application of our developed model/theory in crypto 
inteligent/smart systems. 
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